Rumus-rumus “CEPAT” Matematika

Standard

Dulu, ketika teman masih baru menjadi mahasiswa baru tingkat pertama, dia berkenalan dengan salah seorang mahasiswa baru lainnya yang di kemudian hari menjadi teman baiknya. Ketika awal perkenalan, mereka pun ngobrol kesana-kemari. Tanya sana-tanya sini. Jawab sana, jawab sini. Hingga ia pun akhirnya bercerita bahwaa nilai tes Matematika Dasar-nya, yaitu salah satu mata pelajaran yang diujikan di SNMPTN, adalah 100 alias benar semua.

Mendengar ceritanya tersebut, dia pun terkagum-kagum dibuatnya. Dalam pikirannya, dia berkesimpulan “Wah ia pasti orang yang sangat pandai”. Rasa kagum mendorong rasa ingin tahu  tentang pengetahuannya dalam matematika. Akhirnya, dalam masa awal perkenalan itu, dia mengajak ngobrol tentang matematika yang sudah pernah dipelajari ketika semasa SD sampai SMA dulu.

Dari obrolan tersebut, teman saya jadi tahu, ternyata ia benar-benar luas pengetahuan tentang matematika yang sudah dipelajarinya. Hingga akhirnya, mungkin untuk menunjukkan kepiawaiannya, ia mengajak teman saya adu cepat mengerjakan soal matematika.

Mendapat tantangan itu, sebenernya teman saya ngeper juga. Karena teman saya merasa tak sepandai dirinya. Namun, karena ini namanya juga bukan lomba dan bukan apa-apa, teman saya sih mau saja waktu itu. Soal-soal pun dipilih secara acak dari buku kumpulan soal-soal latihan tes SNMPTN dan UAN beberapa tahun sebelumnya yang masih rajin ia bawa ke mana-mana. Kemudian, adu cepat menyelesaikan soal matematika pun dimulai.

Bagaimana hasilnya? Siapa yang tercepat?

Ternyata benar, dalam beberapa menit saja, teman saya itu berhasil menyelesaikan semua soal yang sudah dipilih tadi (karena yang dipilih cuma 3 soal sih). Dan ia keluar sebagai yang tercepat, menjadi pemenang. Sedangkan teman saya, satu soal pun belum mampu teman saya selesaikan. Waktu itu,teman saya terlalu berkutat dengan soal nomor pertama yang lumayan sukar untuk ukuran teman saya waktu itu. Walau sudah dengan segenap kemampuan teman saya berusaha menyelesaikannya, tapi ternyata, sampai waktu habis belum ketemu juga. Teman saya pun mengakui kelebihan dan kehebatannya.

Dengan sedikit malu-malu, teman saya bertanya padanya tentang soal yang belum bisa teman saya selesaikan tersebut. Sambil ia tanyakan pula kenapa dia begitu cepat bisa menyelesaikan soal-soal tersebut. Soal yang waktu itu belum bisa teman saya selesaikan adalah seperti berikut ini.

Soal: Bila a + 1/a = 5, maka nilai dari a3 + 1/a3 =…

Dengan cepat teman saya itu pun menyelesaikan soal tersebut seperti berikut ini:

a3 + 1/a3 = (a + 1/a)3 – 3a.1/a(a + 1/a) = 53 – 3(5) = 125 – 15 = 110.

Melihat cara penyelesaiannya, saya hanya bisa melongo waktu itu. “Cuma satu baris? Padahal saya mencoba menyelesaikannya berbaris-baris, dan belum ketemu juga”, itu yang ada di pikiran saya. Kemudian, saya pun bertanya ke teman saya itu, kenapa cara pengerjaannya seperti itu?

Dengan senang hati, ia pun menjelaskan ke saya. Ia katakan bahwa, soal semacam tersebut dapat dengan mudah diselesaikan dengan rumus “cepat” berikut ini.

a3 + b3 = (a + b)3 – 3ab(a + b) ………………………………..(1)

Dengan mengganti b dengan 1/a, katanya, maka soal tadi dapat diselesaikan dengan cepat seperti yang sudah dikerjakannya tadi.

Saya yang tak terbiasa menggunakan rumus “cepat” ketika di SMA dulu, penasaran ingin tahu alasan kenapa rumus “cepat” tersebut bisa dipakai. Tapi sayang, teman saya itu tak memberi tahu saya. Malahan ia menambah lagi rumus cepat yang sudah ia ketahuinya, yaitu:

a3 – b3 = (a – b)3 + 3ab(a – b)……………………………….(2)

Akhirnya, ngobrol-ngobrol pun beres. Ia bergegas pulang menuju kost-kost-annya. Saya pun begitu, pulang dengan rasa penasaran yang mengganjal.

Di kost-kost-an, dengan penuh rasa penasaran ingin tahu, saya pun mengutak-atik rumus “cepat” yang telah ia gunakan tersebut. Setelah beberapa waktu lamanya, akhirnya, terpecahkan juga rahasia rumus “cepat” yang dipakai teman saya tersebut. Saya berhasil menelusuri asal-muasal rumus “cepat” tersebut, berhasil menguak rahasianya. (Duh rasanya begitu senang sekali, tak bisa saya ekspresikan dengan kata-kata).

Hasil penelusuran saya tersebut, setelah saya rapikan, seperti berikut ini.

(a + b)3 = (a + b)2(a + b)

= (a2 + 2ab + b2)( a + b)

= a3 + a2b + 2a2b + 2ab2 + b2a + b3

= a3 + b3 + 3a2b + 3ab2

= a3 + b3 + 3ab (a + b)

Jadi, (a + b)3 = a3 + b3 + 3ab (a + b).

Sehingga, a3 + b3 = (a + b)3 – 3ab (a + b). Rumus “cepat” (1) dapat saya buktikan kebenarannya. Kemudian, dengan cara serupa, saya pun berhasil menelusuri asal-muasal rumus “cepat” (2).

Walaupun apa yang telah saya lakukan tersebut sederhana, tapi bagi ukuran saya waktu itu adalah sesuatu yang menggembirakan hati, menyenangkan pikiran, dan memuaskan dahaga keingin-tahuan saya.

Sejak saat itu, bila ada rumus-rumus “cepat” yang saya temui di buku-buku bimbingan tes, saya pun terpacu untuk menelusuri asal-muasalnya. Dengan cara seperti itu, saya seringkali berhasil memecahkan rahasia rumus-rumus “cepat” yang selama ini beredar luas di kalangan siswa yang mengikuti bimbingan test.

Baiklah, segitu dulu saja ceritanya ya…, lain kali insya Allah saya akan membahas baik-buruknya penggunaan rumus “cepat” (Ada satu cerita yang sangat menggelikan tentang hal ini. Mau tahu? Silakan tunggu di postingan mendatang…). Sampai di sini dulu ya…, mudah-mudahan bermanfaat.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s